April 22 12:22 PM ~ 12:34 PM CTO Theater

Level 1 CTO Session III Experts' Lectures & Case Presentations with Lunch CTO-PCI:

Paradigm for Wire Selection and Technique

Masahisa Yamane , MD, FACC OLV Cardiovascular Center, Aalst, Belgium St Luke's International Hospital , Tokyo, Japan SaitamaSekishinkai Hospital, Saitama, Japan

Limitations of Current CTO PCI

- Uncertainties of Guide wire passage
 - Major factors of Guide wire failure
 - Undefined route
 - Calcification/Hard Fibrous plaque
 - Subintimal Dissection/ Hematoma
 - Unpredictable procedure time
 - Radiation time
 - Contrast volume

Tipping Point in Antegrade Approach

- Efficacy of Fielder X-treme/Corsair as an initial choice (step by step approach)
- Recognition of the penetrability and flexibility for the wire tip (Loose tissue tracking)
- GW control relies heavily on not only torque, but also torque response at the tip
- Momentum for Next generation CTO wire
 - Relation of wire flexibilities and torque response
 - Realization of Higher penetrability without sacrificing flexibility

Gaias are new generation wire

Evolution of CTO Recanalization Concept

Mechanism of Deflection Control

• Deflection is influenced by difference in compliance between bordering tissues.

• Deflection is controlled by changing approach angle to the tissue which is intended to penetrate (torque control).

Penetration is controlled by torque control.

Factors Influencing to Wire Deflection

influence factors	
Wire Properties	tip profile
	coating at tip (hydrophilic)
	tip curve
	tip load
	stiffness transition at tip
Tissue Factors	tissue compliance
	tissue homogeneity
	difference in compliance between bordering tissues
	approach angle to tissue
	tissue surface

Linearity of Torque Response

Torque Response Test R=5mm

Torque response

Torque Response Test R=3mm

Torque response

ULTIMATEbros 3g

Axial Whip motion

GAIA First

No Axial Whip motion

Difference in Torque Response

Polymer-filled wire 3g (flattened core) Ultimate 3g (flattened core) Next generation wire 3.5g (non-flattened core)

remarkable delay of Initial torque response with axial whip

better Initial response with remarkable axial whip no initial delay no axial whip

LAD Ca CTO

Spec of Gaia

Total Length 1900mm

Long hydrophilic coating that enhance the smooth controllability in micro catheter.

EMO Centro Cuore,,,Milano, Italy, 11 11 2013

ASAHI Gaia specification / structure / performance **Tip Structure** ~ **1mm Pre-shape**

Pre-shape

EASE-OF-USE MADE A REALITY

The most distal 1mm (approx.) shaped during production, saving the operator the difficulty of manual shaping.

Possible to increase the angle to create a more acute curve manually Possible to change re-shape the tip depending on procedural conditions

Retains shape memory during procedure

ASAHI Gaia vs. Conquest Pro

Difference of penetration by the thickness of the core wire

The above data was obtained by company standardized test, which may differ from industry standardized tests. The above data does not prove that all devices have exactly the same performance with the samples used for these tests.

Gaia specification/structure/performance Tip Structure ~ Composite core : double coil structure

Composite core

Double coil structure Transfer torque force to the distal with keeping flexible tip

Round core design to the distal end eliminates the "Whip Motion" phenomenon

RCA Os CTO with good collaterals

Gatep 1Gaven2000 statt for dwinAmochoring Balloon"

IVUS from AC branch

RCA Os CTO with good collaterals

XT-R wire over the 2 nd OTW lumen of Crusade

Side branch Wire in the intraplaque

RCA Os CTO with good collaterals

And thes deposition

Typical Response of Hard Tissue to Stiff Wire Manipulation

Dense fibrous tissue

Subintimal dissection by Stiff CTO wire manipulation

Dissection/hematoma grows in size

LCX CTO with Bilateral Approach

GuAdet Rente glass ald a Gamid 24 dwore i leg try

IVUS Confirmation

2.75.05 mx 28 mm DESS

How to manipulate Gaia?

The keys to manipulate a Gaia wire:

Pinpoint to direction to go

Rotate to change direction when you pull back (deflection control)

How to use XT-R and Gaia series ?

EMO Centro Cuore,,,Milano, Italy, 11 11 2013

Modern Reverse-CART

XT-R, failed Gaia 1 & 2 Mainede Neergegrade Gaia 2

3 TIPS FOR TACTILE FEEDBACK

Ball-tip features, non-tapered design

ASAHI CTO Guide Wire

New Paradigm in CTO-PCI in 2014

- The key of CTO wiring is precise and intentional control with deflection principle with safer profile.
- New wire control (needs modification) on conventional strategies
- Gaia wires awaited for widely reproducible outcomes, after initial learning of 10-20 cases
- Active wire control could facilitate both Antegrade and Retrograde approaches with further additional success in perspective

CTO Club 2014, 20-21, June, Nagoya, Japan